华南农业大学红满堂社区

 找回密码
 注册

QQ登录

只需一步,快速开始

用新浪微博登录

只需一步,快速搞定

查看: 192|回复: 0

[全职招聘] 英伟达深度学习性能架构师

[复制链接]
  • TA的每日心情
    开心
    4 天前
  • 签到天数: 1 天

    [LV.1]初来乍到

    发表于 2018-4-16 13:57:31 | 显示全部楼层 |阅读模式
    我们是Glassdoor选出的“最佳工作场所”
    我们是《人物》选出的“年度关爱公司”
    我们是《财富》选出的“全球最受赞赏公司”

    我们这里有无微不至的关爱
    我们这里还有“评价最高的CEO”
    ......
    我们,就是AI计算的引领者NVIDIA
    ......
    梦想的机会就在眼前
    你来不来?
    如果你对职位感兴趣,请发简历至:Julietwang@careerintlinc.com
    邮件标题:职位名+姓名+毕业时间+可到岗时间 +招聘信息来源

    Deep Learning Performance Architect-上海/新竹
    工作职责:
    1.        针对架构和算法特征开发汇编级或者CUDA代码
    2.        优化cuBlas、cuDNN、TensorRT的核心kernel;
    3.        针对未来GPU架构开发原型代码,推进下一代架构的设计和优化;
    基本要求:
    1.        严谨的逻辑思维和分析能力
    2.        较强编程能力、算法分析和实现
    3.        有CUDA代码调优经验(或者SIMD等架构的调优经验)
    4.        熟悉矩阵计算的优化和加速(优先)


    Are you obsessed with performance?  Do you like to work at the intersection of hardware and software?  Do you live and breathe deep learning?  NVIDIA is seeking world class programmers and performance architects who love to squeeze out every cycle of performance from deep learning codes.  In this role, you will write code that ships in our deep learning libraries, as well as guide the direction of our future GPU architectures.  This position offers the opportunity to have real impact in a fast-moving, technology-focused company.
    What you'll be doing:
    •        Develop state of the art, performance critical code to accelerate deep learning on NVIDIA's platforms.
    •        Develop innovative HW, DSP, GPU and system architectures to extend the state of the art in deep learning performance and efficiency
    •        Analyze and prototype key deep learning and data analytics algorithms and applications
    •        Understand and analyze the interplay of hardware and software architectures on future algorithms and applications
    •        Collaborate across the company to guide the direction of machine learning, working with software, research and product teams
    What we need to see:
    •        MS or PhD in relevant discipline (CS, EE, Math)
    •        Track record of optimizing code for performance on CPUs or GPUs, including assembly or SIMD programming
    •        Strong mathematical foundation in machine learning and deep learning
    •        Experience working with deep learning frameworks like Caffe, TensorFlow and Torch
    •        Strong programming skills in C, C++, Perl, or Python
    •        Familiarity with GPU computing (CUDA, OpenCL, OpenACC) and HPC (MPI, OpenMP)
    •        Strong background in computer architecture
    •        Experience with matrix multiply and convolution algorithms

    免责声明:本论坛发布的任何言论仅代表网友个人观点,不代表红满堂BBS观点
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    小黑屋|手机版|Archiver|华南农业大学红满堂    合作Q:991788817 |

    GMT+8, 2018-7-21 00:26 , Processed in 0.227558 second(s), 15 queries , Gzip On, Xcache On.

    Powered by Discuz! X3.2

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表